## $\left|V_{u b}\right|$ at Super- $B$

(Inclusive $B \rightarrow X_{s} \gamma$ and $B \rightarrow X_{u} \ell \bar{\nu}$ )

## Zoltan Ligeti



2nd Open Meeting of the SuperKEKB Collaboration KEK, March 17-19, 2009

## The importance of $\left|V_{u b}\right|$

- $\left|V_{u b}\right|$ determined by tree-level decays Crucial for comparing tree-dominated and loop-mediated processes
- $\left|V_{u b}\right|_{\pi \ell \bar{\nu}-\mathrm{LQCD}}=(3.5 \pm 0.5) \times 10^{-3}$ $\left|V_{u b}\right|_{\text {incl-BLNP }}=(4.32 \pm 0.35) \times 10^{-3}$ $\left|V_{u b}\right|_{\tau \nu}=\left(5.2 \pm 0.5 \pm 0.4_{f_{B}}\right) \times 10^{-3}$

SM CKM fit, $\sin 2 \phi_{1}$, favors small value

- Fluctuation, bad theory, new physics?
- The level of agreement between the measurements often misinterpreted

- The question has been who sees NP first; once it's seen, how to understand it?


## Main reason (for me) to continue

- Overconstraining ("redundant") measurements are crucial to bound new physics Parameterization of NP in $B^{0}-\bar{B}^{0}$ mixing:

$$
M_{12}=M_{12}^{\mathrm{SM}}\left(1+h_{d} e^{2 i \sigma_{d}}\right)
$$

- Non-SM terms not yet bound to be $\ll$ SM What we really ask: is $\Lambda_{\text {flavor }} \gg \Lambda_{\text {EWSB }}$ ? Need lot more data to determine whether $\mathrm{NP} \ll \mathrm{SM}\left(\right.$ unless $\left.\sigma_{d}=0 \bmod \pi / 2\right)$

- 10-20\% non-SM contributions to most loop-mediated transitions are still possible $\Rightarrow$ In my mind building a Super- $B$-factory is clearly justified!


## Outline

- Introduction to past inclusive analyses
- Complete description of $B \rightarrow X_{s} \gamma$
- Complete description of $B \rightarrow X_{u} \ell \bar{\nu}$
[ZL, Stewart, Tackmann, to appear]
- A glimpse at SIMBA
- Outlook


## The challenge of inclusive $\left|V_{u b}\right|$ measurements

- Total rate known with $\sim 4 \%$ accuracy, similar to $\mathcal{B}\left(B \rightarrow X_{c} \ell \bar{\nu}\right)$
- To remove the huge charm background ( $\left|V_{c b} / V_{u b}\right|^{2} \sim 100$ ), need phase space cuts

Phase space cuts can enhance perturbative and nonperturbative corrections drastically


Nonperturbative effects shift endpoint $\frac{1}{2} m_{b} \rightarrow \frac{1}{2} m_{B}$ and determine shape

- Endpoint region determined by $b$ quark PDF in $B$; want to extract it from data to make predictions - at lowest order $\propto B \rightarrow X_{s} \gamma$ photon spectrum


## $\left|V_{u b}\right|$ : lepton endpoint vs. $B \rightarrow X_{s} \gamma$

$b$ quark decay spectrum
with a model for $b$ quark PDF


## $\left|V_{u b}\right|$ : lepton endpoint vs. $B \rightarrow X_{s} \gamma$

$b$ quark decay spectrum
with a model for $b$ quark PDF


## $\left|V_{u b}\right|$ : lepton endpoint vs. $B \rightarrow X_{s} \gamma$

$b$ quark decay spectrum
with a model for $b$ quark PDF

difference:


## $\left|V_{u b}\right|$ : lepton endpoint vs. $B \rightarrow X_{s} \gamma$

$b$ quark decay spectrum
with a model for $b$ quark PDF

difference:


## $\left|V_{u b}\right|$ : lepton endpoint vs. $B \rightarrow X_{s} \gamma$

$b$ quark decay spectrum
with a model for $b$ quark PDF

difference:


- Both of these spectra are determined at lowest order by the $b$ quark PDF in the $B$
- Was no fully consistent formalism beyond lowest order, without ad hoc ingredients p. 5


## Past efforts: BLNP (best so far)

- Treated factorization \& resummation in shape function region correctly
- Use specific (ad-hoc) functional forms to model shape function
- Shape function scheme for $m_{b}, \lambda_{1}$ (One scheme for each approach)
- Awkward "tail gluing" to make shape function's moments consistent with RGE (not even done in approaches other than BLNP)



Figure 6: Various models for the shape function at the intermediate scale $\mu_{i}=1.5 \mathrm{GeV}$, corresponding to different parameter settings in Table 1. Left: Functions S1, S5, S9 with "correlated" parameter variations. Right: Functions S3, S5, S7 with "anti-correlated" parameter variations.
[Bosch, Lange, Neubert, Paz]

$\Rightarrow$ Hard to assess uncertainties
Figure 7: Renormalization-group evolution of a model shape function from a low scale $\mu_{0}$ (sharply peaked solid curve) to the intermediate scale $\mu_{i}$ (broad solid curve). See the text for an explanation of the other curves.


## Start with $B \rightarrow X_{s} \gamma$

[ZL, Stewart, Tackmann, PRD 78 (2008) 114014, arXiv:0807.1926]

## Regions of phase space

- $B \rightarrow X_{s} \gamma$ gives one of the strongest bounds on NP
- $m_{B}-2 E_{\gamma} \lesssim 2 \mathrm{GeV}$, and $<1 \mathrm{GeV}$ at the peak

Three cases: 1) $\Lambda \sim m_{B}-2 E_{\gamma} \ll m_{B}$
2) $\Lambda \ll m_{B}-2 E_{\gamma} \ll m_{B}$
3) $\Lambda \ll m_{B}-2 E_{\gamma} \sim m_{B}$

Neither 1) nor 2) is fully appropriate
Can combine 1) - 2) w/o expanding $\Lambda /\left(m_{B}-2 E_{\gamma}\right)$


- Include all known results in regions 1) - 2) (sometimes called SCET and MSOPE)

LL: $\quad 1$-loop $\Gamma_{\text {cusp }}$, tree-level matching
NLL: 2-loop $\Gamma_{\text {cusp }}, \quad$ 1-loop matching, 1 -loop $\gamma_{x}$
NNLL: 3-loop $\Gamma_{\text {cusp }}, \quad$ 2-loop matching, $\quad 2$-loop $\gamma_{x}$

## The shape function ( $b$ quark PDF in $B$ )

- The shape function $S(\omega, \mu)$ contains nonperturbative physics and obeys a RGE If $S\left(\omega, \mu_{\Lambda}\right)$ has exponentially small tail, any small running gives a long tail and divergent moments
$S\left(\omega, \mu_{i}\right)=\int \mathrm{d} \omega^{\prime} U_{S}\left(\omega-\omega^{\prime}, \mu_{i}, \mu_{\Lambda}\right) S\left(\omega^{\prime}, \mu_{\Lambda}\right)$
Constraint: moments (OPE) $+B \rightarrow X_{s} \gamma$ shape How to combine these?



## The shape function ( $b$ quark PDF in $B$ )

- The shape function $S(\omega, \mu)$ contains nonperturbative physics and obeys a RGE If $S\left(\omega, \mu_{\Lambda}\right)$ has exponentially small tail, any small running gives a long tail and divergent moments $S\left(\omega, \mu_{i}\right)=\int \mathrm{d} \omega^{\prime} U_{S}\left(\omega-\omega^{\prime}, \mu_{i}, \mu_{\Lambda}\right) S\left(\omega^{\prime}, \mu_{\Lambda}\right)$
Constraint: moments (OPE) $+B \rightarrow X_{s} \gamma$ shape How to combine these?
- Consistent setup at any order, in any scheme - Stable results for varying $\mu_{\Lambda}$ (SF modeling scale, must be part of uncert.)
- Analog of how all matrix elements are defined

Derive: [ZL, Stewart, Tackmann, 0807. 1926]
$S\left(\omega, \mu_{\Lambda}\right)=\int \mathrm{d} k C_{0}\left(\omega-k, \mu_{\Lambda}\right) F(k)$


Model $\left\{\begin{array}{ll}S & \text { (dash) } \\ F & \text { (solid) }\end{array}\right.$ run to 2.5 GeV

- Consistent to impose moment constraints on $F(k)$, but not on $S\left(\omega, \mu_{\Lambda}\right)$ w/o cutoff
p. 7


## Schemes for $m_{b}$

- Converting results to a short distance mass scheme removes dip at small $\omega$ :

- Can use any short distance mass scheme ( $1 S$, kinetic, PS, shape function, ...)



## Schemes for $\lambda_{1}$

- We find that kinetic scheme, $\mu_{\pi}^{2} \equiv-\lambda_{1}^{\text {kin }}$, oversubtracts; similar to $\bar{m}_{b}\left(\bar{m}_{b}\right)$ issues

(All curves use $m_{b}^{\text {kin }}$ )
- Introduce "invisible" scheme: $\lambda_{1}^{\mathrm{i}}=\lambda_{1}-0 \alpha_{s}-R^{2} \frac{\alpha_{s}^{2}(\mu)}{\pi^{2}} \frac{C_{F} C_{A}}{4}\left(\frac{\pi^{2}}{3}-1\right) \quad(R=1 \mathrm{GeV})$


## Scale (in)dependence of $B \rightarrow X_{s} \gamma$ spectrum

- Dependence on 3 scales in the problem:



$\frac{\mathrm{d} \Gamma_{s}}{\mathrm{~d} p_{X}^{+}}=\Gamma_{0 s} H_{s}\left(p_{X}^{+}, \mu_{b}\right) U_{H}\left(m_{b}, \mu_{b}, \mu_{i}\right) \int \mathrm{d} k \widehat{P}\left(m_{b}, k, \mu_{i}\right) \widehat{F}\left(p_{X}^{+}-k\right)$
$\left(p_{X}^{+}=m_{B}-2 E_{\gamma}\right)$
$\widehat{P}, \widehat{F}$ indicate use of short distance schemes: $m_{b}^{1 S}$ and $\lambda_{1}^{i}$
- In other approaches, using models for $S\left(\omega, \mu_{\Lambda}\right)$ run up to $\mu_{i}$, dependence on $\mu_{\Lambda}$ ignored so far, but it must be considered an uncertainty $\Rightarrow$ This is how to solve it
p. 10



## Designer orthonormal functions

- Devise suitable orthonormal basis functions (earlier: fit parameters of model functions to data) $)_{0.5}$ $\widehat{F}(\lambda x)=\frac{1}{\lambda}\left[\sum c_{n} f_{n}(x)\right]^{2}, n$th moment $\propto \Lambda_{\mathrm{QCD}}^{n}$

$$
f_{n}(x) \sim P_{n}[y(x)] \leftarrow \text { Legendre polynomials }
$$

- Approximating a model shape function


Better to add a new term in an orthonormal basis than a new parameter to a model:

- less parameter correlations
- errors easier to quantify
"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."
(John von Neumann)




## Back to the $B \rightarrow X_{s} \gamma$ spectrum

- 9 models w/ same 0th, 1st, 2nd moments Including all NNLL contributions, find:
- Shape in peak region not determined at all by first few moments
- Smaller shape function uncertainty for $E_{\gamma} \lesssim 2.1 \mathrm{GeV}$ than earlier studies

- Neglected in this plot: subleading shape functions
subleading corrections not in $C_{7}^{\text {incl }}(0)$ boost to $\Upsilon(4 S)$ frame
- These results can also be used for: $B \rightarrow X_{s} \ell^{+} \ell^{-},\left|V_{u b}\right|$



## More complicated: $B \rightarrow X_{u} \ell \bar{\nu}$

[ZL, Stewart, Tackmann, to appear]

## Regions of phase space (again)

- "Natural" kinematic variables: $p_{X}^{ \pm}=E_{X} \mp\left|\vec{p}_{X}\right|$ - "jettyness" of hadronic final state $B \rightarrow X_{s} \gamma: p_{X}^{+}=m_{B}-2 E_{\gamma} \& p_{X}^{-} \equiv m_{B}$, but independent variables in $B \rightarrow X_{u} \ell \bar{\nu}$

Three cases: 1) $\Lambda \sim p_{X}^{+} \ll p_{X}^{-}$
2) $\Lambda \ll p_{X}^{+} \ll p_{X}^{-}$
3) $\Lambda \ll p_{X}^{+} \sim p_{X}^{-}$

Make no assumptions how $p_{X}^{-}$compares to $m_{B}$

- $B \rightarrow X_{s} \gamma$ : small rate in region 3), not important
- $B \rightarrow X_{u} \ell \bar{\nu}$ : 3-body final state, appreciable rate in region 3), where hadronic final state not jet-like E.g., $m_{X}^{2}<m_{D}^{2}$ does not imply $p_{X}^{+} \ll p_{X}^{-}$

- Can combine 1)-2) just as we did in $B \rightarrow X_{s} \gamma$, by not expanding in $\Lambda / p_{X}^{+}$


## Regions of phase space (aside)

- Main difference in $B \rightarrow X_{s} \ell^{+} \ell^{-}$: only regions 1) - 2) are relevant for $q^{2}<m_{\psi}^{2}$ The $q^{2}>m_{\psi^{\prime}}^{2}$ region is like large- $q^{2}$ in $B \rightarrow X_{u} \ell \bar{\nu}$
(More about this tomorrow)



## Charmless $B \rightarrow X_{u} \ell \bar{\nu}$ made charming

- To combine all 3 regions: do not expand in $\Lambda / p_{X}^{+}$nor in $p_{X}^{+} / p_{X}^{-}$
- Want to have: result accurate to NNLL and $\Lambda_{\mathrm{QCD}} / m_{b}$ in regions 1)-2) and to order $\alpha_{s}^{2} \beta_{0}$ and $\Lambda_{\mathrm{QCD}}^{2} / m_{b}^{2}$ when phase space limits are in region 3)
- Hopefully we'll soon have a tool which can be used both to evaluate measurements and as a generator

Start with triple differential rate (involves a delta-fn at the parton level at $\mathcal{O}\left(\alpha_{s}^{0}\right)$, which is smeared by the shape function)

The $p_{X}^{+} / p_{X}^{-}$terms, which are not suppressed in local OPE region, start at $\mathcal{O}\left(\alpha_{s}\right)$ Recently completed $\mathcal{O}\left(\alpha_{s}^{2}\right)$ matching computations contains the needed results [Bonciani \& Ferroglia, 0809.4687; Asatrian, Greub, Pecjak, 0810.0987; Beneke, Huber, Li, 0810.1230; Bell, 0810.5695]


## SIMBA


[Bernlochner, Lacker, ZL, Stewart, Tackmann, Tackmann, to appear]

## Fitting charmless inclusive decay spectra

- Fit strategy: $\widehat{F}(k)$ enters the spectra linearly $\Rightarrow$ can calculate independently the contribution of $f_{m} f_{n}$ in the expansion of $\widehat{F}(k)$ :

$$
\begin{gathered}
\mathrm{d} \Gamma=\sum \underbrace{c_{m} c_{n}}_{\text {fit }} \underbrace{\mathrm{d} \Gamma_{m n}}_{\text {compute }} \\
\mathrm{d} \Gamma_{m n}=\Gamma_{0} H\left(p^{-}\right) \int_{0}^{p_{X}^{+}} \mathrm{d} k \frac{\widehat{P}\left(p^{-}, k\right)}{\lambda} \underbrace{f_{m}\left(\frac{p_{X}^{+}-k}{\lambda}\right) f_{n}\left(\frac{p_{X}^{+}-k}{\lambda}\right)}_{\text {basis functions }}
\end{gathered}
$$

Fit the $c_{i}$ coefficients from the measured (binned) spectra

- What we hope to achieve:
- Correlation and error propagation of SF uncertainties
- Simultaneous fit using all available information
- Can add or remove parameters to estimate model uncertainties
- Reduced correlations between model parameters (orthonormal basis)


## A preliminary $B \rightarrow X_{s} \gamma$ fit

- Belle $B \rightarrow X_{s} \gamma$ spectrum in $\Upsilon(4 S)$ restframe For demonstration purposes only - there are very strong correlations

Fit with 4 basis functions in the expansion of the shape function

Shows that fit works (not as trivial as this plot might indicate); still issues to resolve
[Belle, 0804.1580 + Preliminary; thanks to Antonio Limosani]


- Next step: include various $B \rightarrow X_{u} \ell \bar{\nu}$ measurements


## Conclusions

- Improving accuracy of $\left|V_{u b}\right|$ will remain important to constrain new physics (Current situation unsettled, PDG in 2008 inflated error for the first time)
- Qualitatively better inclusive analyses possible than those implemented so far Developments will allow combining all pieces of data with tractable uncertainties
- To draw conclusions about new physics comparing sides and angles, we'll want $\geq 2$ extractions of $\left|V_{u b}\right|$ with different uncertainties (inclusive, exclusive, leptonic)
- Don't give up inclusive... ability to do $B$ reconstruction... hermeticity... important also for $B \rightarrow X_{s} \ell^{+} \ell^{-}$, final states with $\tau^{\prime}$ s and $\nu$ 's, etc.



## Backup slides

## The c.m. frame $B \rightarrow X_{s} \gamma$ spectrum



## Derivation of shape function formula

- The shape function is the $B$ meson matrix element of a nonlocal operator:

$$
S(\omega, \mu)=\langle B| \underbrace{\bar{b}_{v} \delta\left(i D_{+}-\delta+\omega\right) b_{v}}_{O_{0}(\omega, \mu)}|B\rangle, \quad \delta=m_{B}-m_{b}
$$

Integrated over a large enough region, $0 \leq \omega \leq \Lambda$, one can expand $O_{0}$ as
$O_{0}(\omega, \mu)=\sum C_{n}(\omega, \mu) \underbrace{\bar{b}_{v}\left(i D_{+}-\delta\right)^{n} b_{v}}_{Q_{n}}+\ldots=\sum C_{n}(\omega-\delta, \mu) \underbrace{\bar{b}_{v}\left(i D_{+}\right)^{n} b_{v}}_{\widetilde{Q}_{n}}+\ldots$
$C_{n}$ same for $Q_{n}$ and $\widetilde{Q}_{n}$ (since $O_{0}$ only depends on $\omega-\delta$ ), determined by matching
Evaluating $\left\langle O_{0}\right\rangle_{b_{v}(k)}$, can show using RPI: $C_{n}(\omega, \mu)=\frac{1}{n!} \frac{\mathrm{d}^{n} C_{0}(\omega, \mu)}{\mathrm{d} \omega^{n}} \quad$ [Bauer \& Manohar]

- Define the nonperturbative function $F(k)$ by:

$$
S\left(\omega, \mu_{\Lambda}\right)=\int \mathrm{d} k C_{0}\left(\omega-k, \mu_{\Lambda}\right) F(k), \quad C_{0}(\omega, \mu)=\left\langle b_{v}\right| O_{0}(\omega+\delta, \mu)\left|b_{v}\right\rangle
$$

Expand in $k$, compare: $\int \mathrm{d} k k^{n} F(k)=(-1)^{n}\left\langle Q_{n}\right\rangle_{B}$, so fully consistent with OPE

